

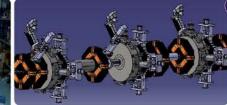
Integration of 3D Models of the ESS Bilbao Contribution to ESS

Pedro J. González, Technology Director on behalf of ESS Bilbao team

1st BrightnESS Best Practice Workshop: Engineering aspects of large-scale In-Kind projects

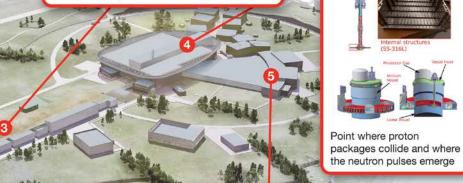
November 14-15th, 2016, Bilbao

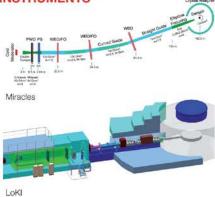
www.essbilbao.org


Contents

- ESS Bilbao In-Kind Contribution to ESS
- MEBT Design and Integration
 MEBT Risks and Strengths
- RF Distribution for Warm Linac
 - RF Distribution Challenges

Spanish Contribution to ESS





Acceleration Element: design, construction and testing at ESS Bilbao

Various RF chains: 1 for the RFQ and 5 for the DTL Composed of modulators, klystrons and wave guides

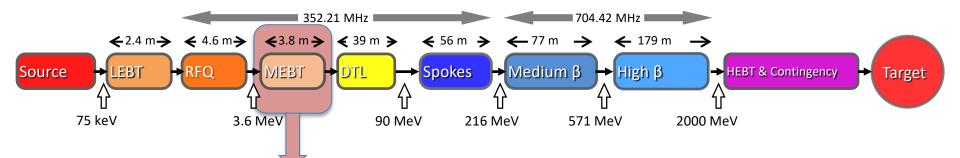
TARGET

-Drive Unit

(55-3161)

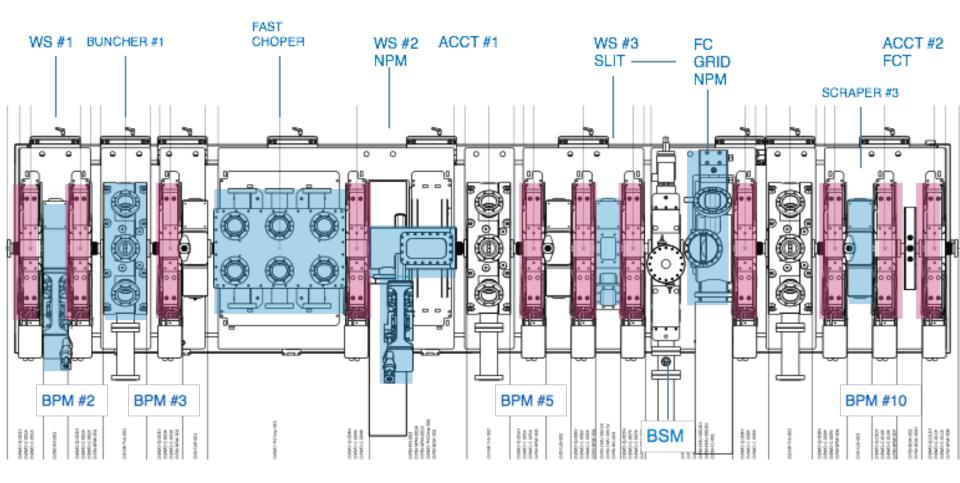
Instruments with Spanish participation: Miracles, LoKI, Espresso **Pending confirmation

Acceleration structure used in the preliminary stages of the ion accelerators

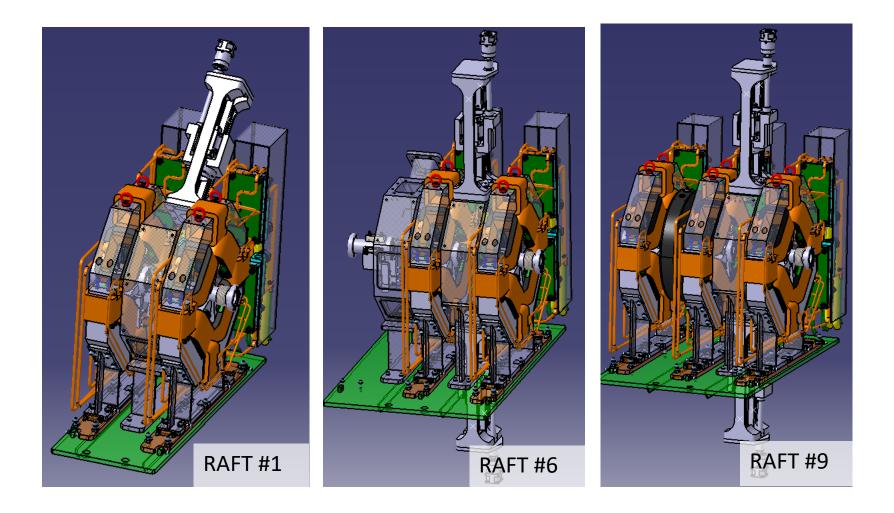

*ESS Bilbao proprietary structure

INSTRUMENTS**

MEBT

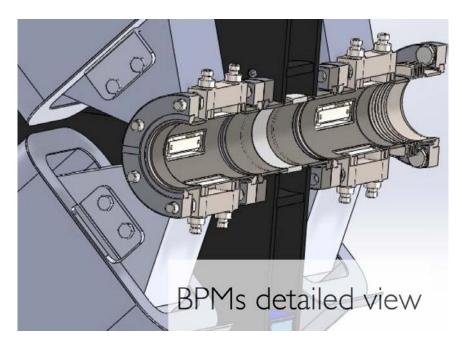

Matching between RFQ and DTL, with low loss Provides bunching, focusing and diagnosis of proton beam

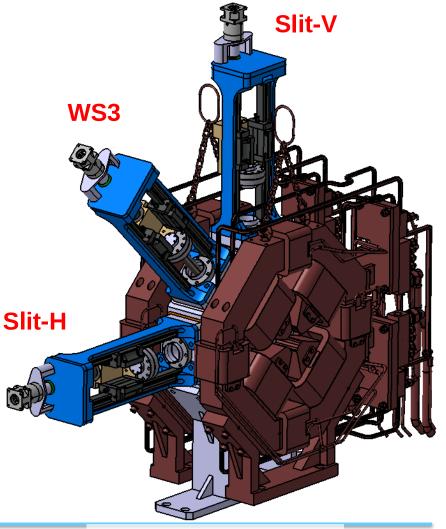
- 11x Quadrupole Magnets
- 3x Buncher Cavities
- 1x Fast Chopper+Beam Dump
- 8x Beam Position Monitors
- 3x Wire Scanners
- 1x Slit and Grid
 - 2x Beam Current Transformer
 - 1x Fast Current Transformer
 - 1x Faraday Cup
 - 2x Non-intercepting Profile Monitors
 - 1x Bunch Shape Monitor

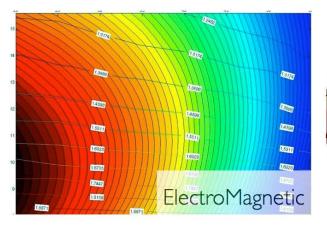

MEBT: Layout

• Current version: 10.3

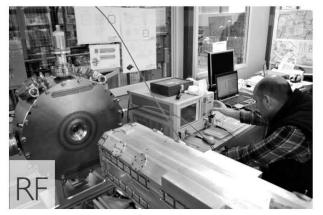
MEBT: Support and Alignment

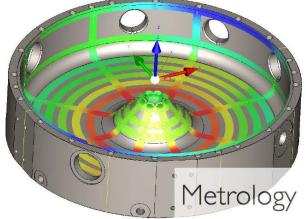


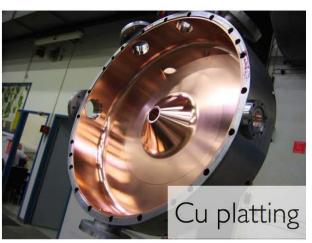

MEBT: Quadrupoles


Complex Integration:


- Quadrupoles and BPMs
- Quadrupoles and adjacent elements

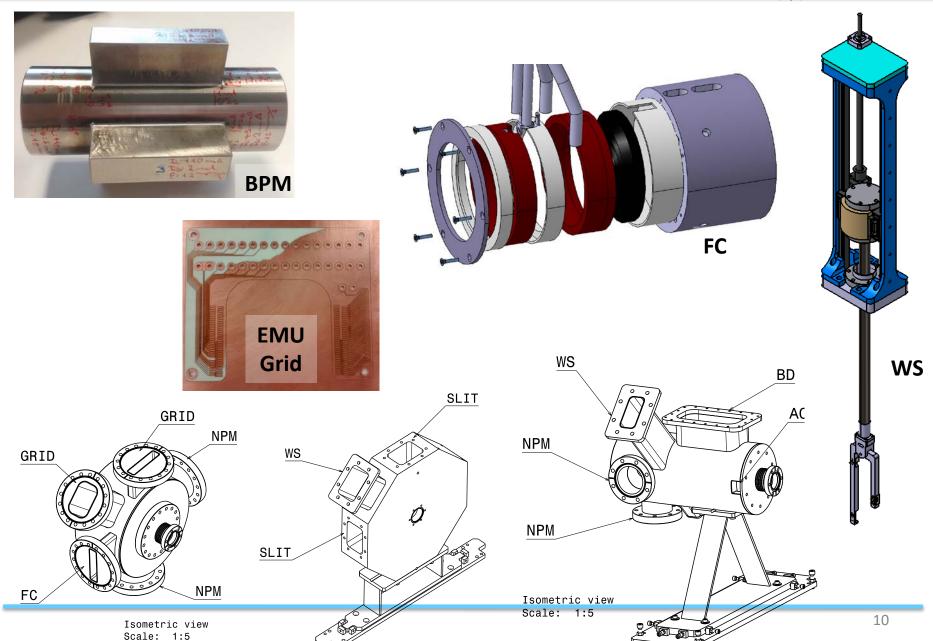



MEBT: Buncher Cavities 🦗 📻



MEBT: Fast Chopper

- Design based on fast transmission line strips to deflect the beam vertically, by means of electromagnetic fields.
- Stripline matched to 50 ohm termination loads (to avoid reflections and maximize power transfer).
- Fast transmission line scheme with overall rise time less than **10 ns** and maximum differential voltage of **5 kV**.



₩₹ŗ	-85	- 53	58 👘 💕	1. Sta	53	-31	- 23
ļ.				and the second second			المعالية
						00024000	105-11-11-1
1			23			18 N	.
							ne se
	<u> (</u>		4 <u>11977</u> 4	1.7.80. (S	<u>.</u>	, â, c	
	-	No cable	30m cable	۷۵	(aprox.)		
M	86.	3237 V	3220 V	17 V (0	.5%×10%	1. 1.	
M	in.	3177 V	3134 V	43 V (1	396<10%	Carles .	

MEBT: Diagnostics

MEBT: Integration

• Common Problem:

- Components' design not ready in time → Less time for integration stage
- Conceptual Design → Detailed Design → Integration
 Entangled stages (no longer a nice cascade plan)
 Requires multiple iterations
- When requirements/specifications collide ("all the time"), an agile mechanism to solve the conflicts is required:

Integrator

- Discipline Groups' Perspectives
- Project Perspective: ESS level and/or Partner level

End User

Partnership v.s. Client-Server Approach

MEBT: Risks

Baseline Specifications

- Normally Based on ESS or in-kind partner experience
- Sometimes based on a rule of thumb plus contingency

Moving the Goalpost

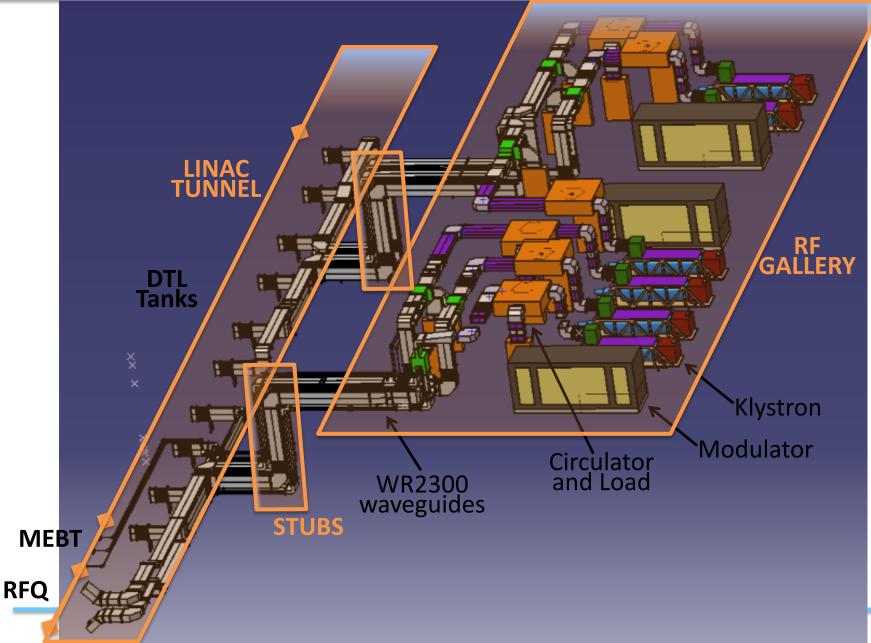
- Specifications are changed during construction phase
 - Design changes
 - New Handbooks: vacuum, alignment, conventional facilities, etc.
 - Standardization/Harmonization process ongoing

Communication

Technical staff and project planning staff not speaking the same language

MEBT: Strengths

Growing community!


Science & Technology Challenge!

ESS BILBAO involved in Accelerator, Controls, Target and Instruments!

RF Systems for Warm Lina

- **RF Power Systems at 352 MHz for NC Linac:**
 - RFQ
 - 3 MEBT Bunchers
 - 5 DTL Tanks
- These include:
 - 3x HV Power Converters (Modulators)
 - 6x+3x High Power Amplifiers: Klystrons + SSPAs
 - 6x+3x RF Distribution (RFDS): WR2300 + 1-5/8"
 - 9x RF-LPS (Local Protection System): Interlocks
 - 9x LLRF (+ 26x LLRF for Spoke Linac)
- "From AC Plug to Cavity Power Coupler"

NC RF Systems: Layout 🥮

bilbao

NC RF Systems: Distribution FRS

• 6x WR2300 FH/HH

- "Commercial" Components:
 - Circulators, Loads with high temp. water cooling (developed by ESS)
- "Custom" Components: To be manufactured by metal workshops (Aluminum sheets, cutting, machining, welding, chromate conversion,...)
 - Straight Sections, E- and H-Bends, FH/HH Transitions, Power Splitters, Dual/Quad Directional Couplers, Phase Shifters, Shutter Switches, Bellows,...

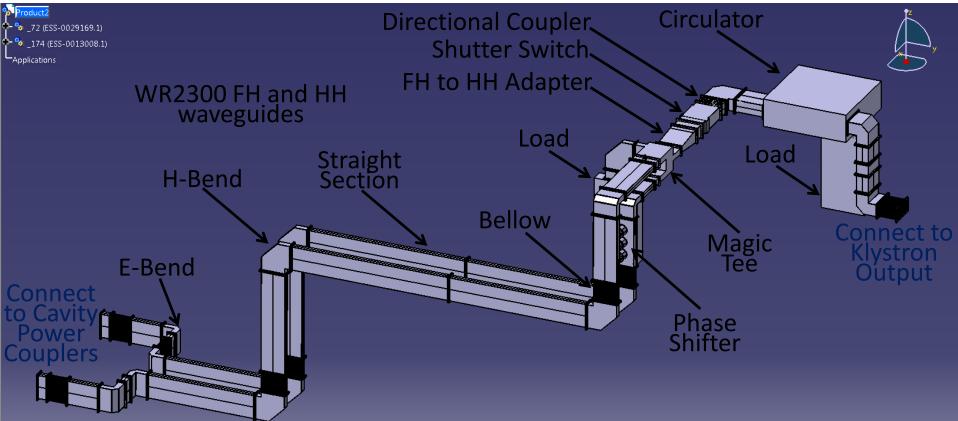
• 3x 1-5/8in EIA Rigid Lines

- Mostly commercial

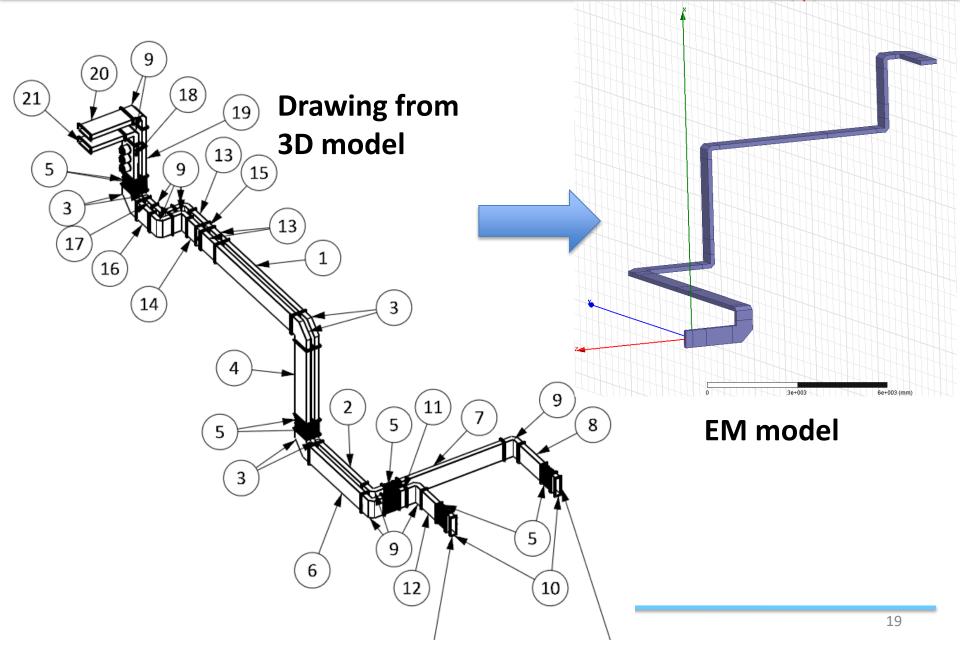
NC RF Systems: Distribution ESS

• **RF Distribution approximate numbers**

Waveguide Components	Qty.		
Circulators, FH Loads, HH Loads*	6 ea.		
Shutter Switch, Magic Tee*, Phase Shifter	6 ea.		
Rigid Straight Sections (including FH-HH adapters, dual/quad directional couplers,)	350-400 m		
Bends (E- and H-plane, mitered)	120-140		
Bellows or Semi-Flexible Sections (0.5m long)	40-50		


*: Power splitter and load for RFQ provided by CEA-Saclay

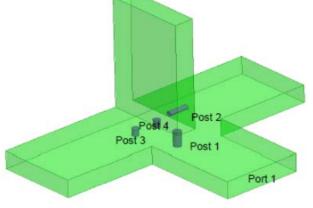
• RF Distribution layout optimization almost ready

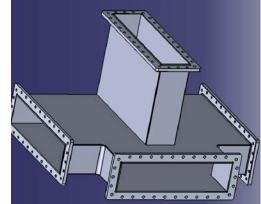

- RFQ and DTL tanks require 2 couplers
- Amplitude and Phase matching between both arms
- Keeping compatibility with existing commercial components

NC RF Systems: WG Layout Ess

- 2 Power Couplers per Cavity:
 - Power Splitter + Amplitude and Phase Matching between Branches
 - Some pairs of branches are symmetric or have similar layout
 - Other pairs feature different layout \rightarrow different number of E-/H-Bends
 - Phase Matching:
 - Equivalent "electrical length" ($\Delta \phi = 0 \pm 2k\pi$ rad) \rightarrow Phase shifter
 - Attention to reference coordinates (180 deg shifts)

NC RF Systems: WG Layout Stress

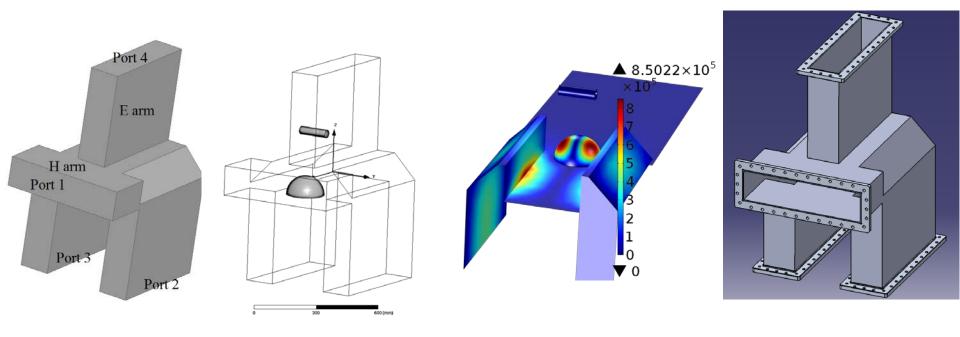

NC RF Systems: WG Layout States


- Quick spreadsheet calculations:
 - Based on analytic results and component simulations
 - To assess electrical length matching between arms
 - Fast and accurate (error < ±0.2deg, compared to HFSS simulations)

RF CHAIN	DTL Tank 3							Component		RF CHAIN	DTL Tank 3							Component	
BRANCH	1							Simulation	Calculations	BRANCH	2							Simulation	Calculation
Location		HH/FH	Туре	Dwg Ref	P/N	CAD No.	Length(mm)	Phase(°)	ElectLen(°)	Location	WG	HH/FH	Туре	Dwg Ref	P/N	CAD No.	Length(mm)	Phase(°)	ElectLen(%)
RF Gallery	WR2300	HH	DDC	23	ESS-0018605	ESS-0030484	600	173,84	173,84	RF Gallery	WR2300	HH	DDC	23	ESS-0018605	ESS-0030484	600	173,84	173,84
RF Gallery	WR2300	HH	Straight	21		ESS-0034895	908	263,08	263,08	RF Gallery	WR2300	HH	Straight	22		ESS-0031953		221,65	221,65
RF Gallery	WR2300	HH	H-Elbow	6	ESS-0048642	ESS-0009027	914,4	216,72	216,72	RF Gallery	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21
RF Gallery	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21	RF Gallery	WR2300	HH	PhaseShi	19		ESS-0041517		0,43	360,43
RF Gallery	WR2300	HH	Straight	20		ESS-0034890	1200	347,69	347,69	RF Gallery	WR2300	HH	Flex	2	ESS-0033929	ESS-0030482	500	144,87	144,87
RF Gallery	WR2300	HH	Flex	2	ESS-0033929	ESS-0030482	500	144,87	144,87	RF Gallery	WR2300	HH	H-Elbow	6	ESS-0048642	ESS-0009027	914,4	216,72	216,72
RF Gallery	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21	RF Gallery	WR2300	HH	Straight	24		ESS-0034891		149,65	509,65
Stub	WR2300	HH	Straight	15		ESS-0030513	1813,9	165,56	525,56	Stub	WR2300	HH	Straight	16		ESS-0030321	4000	78,95	1158,95
Stub	WR2300	HH	Straight	13		ESS-0030517	4000	78,95	1158,95	Stub	WR2300	HH	H-Elbow	6		ESS-0009027	914,4	216,72	216,72
Stub	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21	Stub	WR2300	HH	Straight	18		ESS-0030326		29,15	749,15
Stub	WR2300	HH	Straight	14		ESS-0030515	2738	73,3	793,30	Stub	WR2300	HH	Flex	2		ESS-0030482		144,87	144,87
Stub	WR2300	HH	Flex	2	ESS-0033929	ESS-0030482	500	144,87	144,87	Stub	WR2300	HH	H-Elbow	6	ESS-0048642	ESS-0009027	914,4	216,72	216,72
Stub	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21	Stub	WR2300	HH	Straight	17		ESS-0030322	2353,4	321,87	681,87
Stub	WR2300	HH	Straight	12		ESS-0030519	1908,1	192,85	552,85	Tunnel	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21
Tunnel	WR2300	HH	H-Elbow	6	ESS-0048642	ESS-0009027	914,4	216,72	216,72	Tunnel	WR2300	HH	Flex	2	ESS-0033929			144,87	144,87
Tunnel	WR2300	HH	Flex	2	ESS-0033929	ESS-0030482	500	144,87	144,87	Tunnel	WR2300	HH	Straight	11		ESS-0030417		170,8	170,80
Tunnel	WR2300	HH	Straight	8		ESS-0050307	3017,26	154,21	874,21	Tunnel	WR2300	HH	Straight	9		ESS-0030410		271,48	991,48
Tunnel	WR2300	HH	Angled	7	ESS-0050220	ESS-0034850	928	268,88	268,88	Tunnel	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023		26,21	26,21
Tunnel	WR2300	HH	Straight	1		ESS-0030441	3399,1	264,85	984,85	Tunnel	WR2300	HH	Straight	10		ESS-0030388		338,47	338,47
Tunnel	WR2300	HH	E-Elbow	3	ESS-0033925	ESS-0009023	762	206,21	206,21	Tunnel	WR2300	HH	Flex	2	ESS-0033929			144,87	144,87
Tunnel	WR2300	HH	H-Elbow	6	ESS-0048642	ESS-0009027	914,4	216,72	216,72	Tunnel	WR2300	HH	Straight	25		NA	254	73,59	73,59
Tunnel	WR2300	HH	Straight	5		ESS-0030425	967,1	280,21	280,21										
Tunnel	WR2300	HH	Flex	2	ESS-0033929	ESS-0030482	500	144,87	144,87						F	hase shift due	to reference	coordinates	-180,00
Tunnel	WR2300	HH	Straight	25		NA	254	73,59	73,59										
	PHASE CALCULATIONS				SUM	29686,7	4423,86	8557,69							SUN			6918,16	
						mm	deg	deg								mm	deg	deg	
		a (mm)	584,2							-									
		f (Mhz)	352,21								CHING (deg)								
	landa	ac (mm)	1168,4							199,65	1639,53	4	199,53	0,12					
			299792458							Component		x360º	Wrapped	Error					
		c (Mhz)	256,58							Simulation	Calculations		Phase (deg) (deg)					
		a0 (mm)	851,18																
	landa	ag (mm)	1242,50																
l																			
1		th (mm)	315																
1	Elect. Lengt	h (deg)	91,3																
_																		•	

NC RF Systems: Magic Tee Sea

- Development of a Conventional Magic Tee
 - EM + Mechanical Design by ESS Bilbao
 - Manufacturing by local company
 - Tests carried out by ESS Bilbao



WR2300 HH

NC RF Systems: Magic Tee State

- New Design of a Compact Magic Tee
 - Folded output arms for aligned branches
 - Electrically and Mechanically compatible with an existing commercial product

RF Distribution: Challenge

- Layout design to connect Amplifiers in RF Gallery and Cavities' Power Couplers in Linac Tunnel, through Stubs
 - ESS centralizes the integration process, with inputs from ESS Bilbao and other stakeholders
 - ESS uses Catia V6, while ESS Bilbao uses Catia V5, Solidworks, HFSS
- "Commercial" and "Custom" components
 - Whenever possible, maintain mechanical compatibility with existing commercial components (not a single source)
- Still to do:
 - Coarse and fine phase matching
 - Waveguide support structure

Thank you for your attention!

Special thanks to:

Ibon Bustinduy (MEBT Project Manager) Igor Rueda (Head of Manufacturing Dept.) Oscar Gonzalez (Responsible of RF Distribution)